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Abstract

A single mode-cavity is deformed smoothly to e.haage its el_tromapetic ¢igenfrequency.
The system is modmIIed as a simple harmonic oscl]/ator with varying period. The Wigner
function of the problem is obtained exactly starting with a sque_,d initial state. The result
is evshusted for s llnear change of the cavity length. The approach to the adiabatic limit

is invest_ated. The maxinmm sqm_slng is found to occur for smooth change lasting only

s fraction of the olcillational period. However, only a factor of two improvemont over the

adiabatic result proves to be possible. The sudden limit cannot be Investigated meanin_eulIy
within the model.

1 Introduction

H the length of an electromsgnetic cavity is changed, there are two meanings to the concept of

sdiabaticit_,. Firstly, the movement may be so slow that the cavity eigenfrequency varies only

little during one osciIIational period; this is the sdlabatic Limit proper. However, the process

of establishing the correct osci]I&tional frequency requires that the radiation has time for many

round trips in the cavity. The cavity deformation may enter another regime, the eigenfrequency

does not change appreciably over a few round trips, but it may change significantly over a single

oscillations] period. In this Limit, we still expect the cavity mode to be described by a simple

harmonic oscillator, but its frequency changes smoothly with time. H the movement is rapid

compared with the e_vity round trip time, the complete Maxwell equations need to be used in

the calculation. Solvin s an e/genvalue problem with a moving boundary is a tricky problem; I
do not want to discuss this a/tuation here

The theory of a harmonic osciUator with variable frequency is a paradigmatic problem in physics.

ClassicalIy it appears as a case of parametric driving, and quantum mechanically it is connected

to the history of adiabatic invariants. A classical discussion is found in van Kampen [I] and of

the many quantum treatments I wish to mention only Dykhne[2], Popov and Perelomov [3] and

Man'ko and his collaborators [4]-[5]. Because the Heisenberg equations of motion sgree with the

classical ones, the quantum solution can be reduced completely to solving the classical problem;

this was recently shown in an elegant way by Lo [6]. The same conclusion was formulated for

the Wigner function by the present author [7] albeit in a different physical context. Squeezing

introduced by time evolution has been discussed for other physical situations in Refs. [8]-[10].
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2 The general problem and its solution

In a cavity of length L we assume the Hamiltonian for one radiation mode to be of the form

1 n=(t)q=) (1)-H- (p'+

where the time dependent frequency is given by

C'ff

n'(t) = n0'/(t) ; no = Lo' (2)

L0 is the initial length of the cavity. H we introduce the scaled variables

P (3)
r=n0t; _= no'

we find the Heisenberg equations of motion using the canonical commutation relations between

p a_ad q

= ,. ; , = -/(_.)q, (4)

where the dot denotes derivation with respect to I-. Integrating these equations gives the solution

for the Heisenberg variables as hem been discussed in the literature,

In the Sc_nger picture we obtain the equation of motion for the Wigner function in the form

#W aw-_- + +-_v - f(Oq = o. (5)

Its characteristics are the very Eqs. (4), but now they are classical relations between c-numbers.

In order to solve (5) we proceed as in Ref. [7] and de/me the hmdsmental system of solutions

wx and w= such that

_,(o) = a,,(o)= 1
(6)

,/,,(o)= ,,,,(o)= o.

Their Wronskian is a constant of the motion equalling unity. We assume the mode in the cavity

to initially be in the squeezed state having the Wigner function

Wo(qo,lro)=Cexp[. (9o_')' _(-o" -.)'1 (7)

Expressing the general solution of (4) in terms of the solutions (6)

q eo,,,,(,') +,,o,,,,(,')

,_= ,j,= eoe,(,')+ +Oa,,(,')
(8)

+
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and inserting q0 and a'0 from (S) into Eq. (7) we obtain the required solution of (5)

W(q,,,1-) - Cexp[ (w'q-w'a'-q)'l.,ba

s2 t)l] .x exp [-_(wl_- @lq-

Calculating the m-rginai distribution for the variable q we obtain

Vv.(q,,.) = / d,_W(q,,_,,')

- c [ (q- q("))']- exp. _(,) j •

The Wigner function thus progresses along the dsuicai trajectory according to

and its spreacling is given by

_(,-)
8 3

(9)

(10)

(11)

(12)

At the initial time the squeezing is given by s 2, but at the final time, after the change of the

cavity length, the result is determined by the values of wl and w2 at the end of the interaction.

It is generally agreed, that in the adiabatic limit proper, the change of the squeezing must be

small, see e.g. Graham [11]. In the next Section we will investigate a simple model, where we

can see how the situation is changed if the motion is smooth, but not necessarily adiabatic with

respect to the osciUational frequency.

3 Linear change of cavity length

We now asttme that the length of the cavity is changed linearly, viz

L(t) = Lo + _t ffi Lo + _+'/fl0. (13)

The characteristic time scale of the cavity change is given by

L0 /']o (14)

which goes to infinity for properly adiabatic motion. Negative _ means that the cavity is made
to contract.

With these definitions the fraction f(t) becomes

L'o i (15)
/(t) = (Zo+ >,t),= (1+ (t/_,)P "
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Relations (4) give the equation

+ y(,)e = 0, (16)

which hu to be solved with the initial conditions (6). For the siren function (15), this becomes

a Fuchsisn problem with two singulm-ities and the solution can be obtained in a straightforward

way.

We introduce the vm'iables

A = L,'/_' -

t _ _t L(t) - Lo
T =

to _oo Lo Lo

With these definitions the fundamental solutions (6) m-e given by the expressions

(17)

1 T)]}w1(_') = _ {cos[Alo8(1 + T)]- _-_,in[Alo8(1 +

(18)

w=(T) - _ IV_'_"_sin[Alog(l+ T)] .

R_'garding T ss a function of I-, we can euily see that these functions constitute a solution to

the problem. Exciting the cavity state by a clusical source, we will find it in a _coherent st*te

with J = 1 in (7). The width M a function of time becomes

,'(t) = wl(,) + wl(,). (19)

Before we proceed to consider the consequences of the exact expression (18) for the width (19),

we look at the adiabatic limit proper, i.e. _ =_ 0. Then we find

Alog(1 + T)=_ -_ _0 -- Ctot
(20)

With these results, the equations (18) So over into

(21)

Remembering that Eq. (17) implies

=, =
V ;.,,o

(22)
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we find that the results (21) follow from a simple LppUcation of the WKB-method to the equation

(16). Inserting these results into the width (19) we find

No (23).'(t) =

As we cannot hope to change the o6ciUationa] frequency by • I_e fraction, we reach the con-

clusion th•t no large amount of squeesing can be achieved in the adi•b_tic regime proper. This

s4_rees with conclusions arrived •t in earlier treatments, in particular the adi•b•tic invari_nce
of l'l,= has been found, see e.g. Ref. [11].

Another peculiarity of the result (23) is th•t no tr_ce of the osci]l_ionsl behaviour survives. If

the parameter A is not too large, the situation changes. Because of the second term in wl of
Eq. (18), oscill•tions appear in the width. To see how much squeesing they can achieve, we

write the solutions (18) in the form

1 sin _o]

Nor0
w2 -- __sin_o.

Here _o is the arg_unent of the trigonometric functions in Eqs. (18).

becomes

_=(t)= flo [ 1 1 sin= ]1- sin2 + •

(24)

The width (19) then

(25)

For A =_ oo this reproduces (23). The expression has • minimum for each fixed vmdue of the

par•meter A, but for l_e A, this •pproaches the a_Uabatic limiting value (23). For example

A = I gives the minimum value 0.69 for the expression in square brackets in (25). This occurs

• t the time when _0 --- 0.55.

The best po_ible values for the squeesing are obtained with • very small A, in which case the

minimum occ_, for early times, _o _-. 0. The expression (25) c_n then be written

o"1(t)--- _o [ =] _o (26)

which is not • large improvement over (23). The minimum also occurs for • small parameter A,

in which case we rapidly appro_h the breakdown of the validity of the theory. For very small

A, the expression (17) gives

1 (27)
floto _- _ ,

which is not in the adi•bstic re, me proper. The minimum then occurs st times when

1 (28)
_0_. _t _. A < _to _. _ •
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Thuswehaveto chansethecav/tye/genirequencyin s time less than the oscillation period. This

cannot obv/ouily be achieved by mechan/cal means, and even using some electron/c sw/tching to
change the effective path length through the cav/ty, we can attempted this only in the microwave

region. However, as the advantage of the method is expected to be small, there seems to be

little motivation to solve the technical problems involved.

4 Discussion

We have solved the problem of the deformation of an intracLvz_y field during a smooth change

of the cav/ty eisenfrequency. Even if we are allowed to depm-t from the strict adiabatic limit,

the expected squeez/ng remains modest. The calculation cannot be taken to the sudden limit,

because then the simple harmonic o,_.-illator description is no longer valid. The complete Maxwell

equations must be treated in that cue. In this aspect our problem differs from the corresponding

SchrSdinger equation [12]-[14] where both the sudden and the adiabatic limit can be handled in

the same way.
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